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Abstract. The coupled multiscale, multiphysics method, &4 a novel method for simulating transition-regime gas §ow
The basic idea of the method is to incorporate physics fransthall-scale molecular motions into the continuum franrewo
of the Navier-Stokes equations. GMses a Monte Carlo procedure to solve the Boltzmann equatisarious instants in
time and calculates the viscous stress teris@nd heat flux vectoq, from the molecular velocities. The computedndq

are then substituted into the Navier-Stokes equationstasktequations are advanced forward in time using a finltene
method. A difficulty in implementing multiscale methods bfsttype lies in initializing the velocity distribution fations
used in the Monte Carlo solver at the beginning of each iatégr cycle. In this paper, we describe a method of particle
velocity reinitialization that is significantly more effait than using a standard velocity distribution function.
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INTRODUCTION

Gas flows are generally classified by the level of rarefaaifdhe gas, which can be described by the Knudsen number,
Kn = A/L, whereA is the mean free path of the molecules &ni$ a characteristic length scale of the flow. When
Kn is small, the flow is in the continuum regime, and the Navigk8s equations are commonly used. Wikanis
large, the flow is said to be rarefied, and the constitutivesltivat describe momentum and energy transport in the
Navier-Stokes equations break down. The Boltzmann equeticommonly used instead to treat these Highflows

[1]. This equation can be solved efficiently whim is large, but it becomes more difficult and time-consuming to
solve wherKn s small. Thus, accurate and efficient algorithms exist éanputing large- and smal flows, but for
arange oKn (£(1072) < Kn < ©(10)), commonly referred to as the transition regime, the centin equations are
not sufficiently accurate and Boltzmann’s equation is toweticonsuming to use.

A variety of multiscale methods [2] that couple the Boltzmamnd continuum approaches have been used to
calculate transition-regime flows. One divides the spdtiahain into continuum and non-continuum regions. In these
spatial hybrid methods [3, 4, 5, 6, 7, 8], the Navier-Stokgsadions are used to compute the flow in the continuum
regions, and the Botzmann equation is solved using thetdimewlation Monte Carlo (DSMC) method in the non-
continuum regions. Coupling between the regions is accishmgd by matching the continuum and molecular-level
fluxes at the interfaces. Other domain decomposition tegtas couple the two regions directly in the governing
equations [9, 10]. A second approach is to use informatimutithe molecular-level system to form a new set of
macroscopic evolution equations. The gas-kinetic hydnadyic method [11, 12], the coarse-grained acceleration
method for the Boltzmann equation [13], and the micro-mag@scaling method [14] are all based on this principle.

A new multiscale method, the coupled multiscale multipbysnethod (CM) [15], solves the continuum-level
conservation laws using molecular-level fluxes calculatedctly from a Monte Carlo simulation in the place of
constitutive models for the energy and momentum fluxes.dé¢hfluxes are updated frequently enough, the’ CM
significantly extends the range of applicability of the égoatim-level conservation laws. It has been used succéssful
to calculate several one-dimensional transition-regiest flows withKn up to unity [15]. The challenge of this
method is that it becomes less computationally efficien{mncreases. In this paper, we discuss why this is so and
test methods for improving the efficiency of the &M brief overview of which is given in the following section.



PHYSICAL MODEL

We can compute moments of Boltzmann’s equation by muliigiyi by m,, m,c, and(1/2)m,c? and integrating over
all velocity space to obtain the following set of evolutiaquations [1]:

dp
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In deriving this expression, the molecular velocity hasrbdecomposed into the sum of a mean velocigyand
fluctuating or thermal velocity, and the continuum-level density, linear momenta, andgreme defined gg = nmy,
puUp = NM,C, andpe = nm,c2/2, respectively.

If we define the viscous stress tensor, heat flux vector, asldrspressure as

T=—(pc’c' —Pl), 4)
1 ——

q=5pc?c, (5)

p= 3pC2 (6)

respectively, Egs. (1-3) are identical to the continuunseovation equations for mass, momenta, and energy [16].

The fundamental idea of the G\ to compute directly the properties of the small-scalesmolar motions and use
this information to close Egs. (1-3) instead of using cauttie laws forr andg. Starting from a particular continuum-
level flow field, we generate a compatible distribution of emilar velocities and then solve the Boltzmann equation
for a short interval of time to calculateandqg using Egs. (4-5). The computadand q are then substituted into
Egs. (1-3), and these equations are advanced forward irusing a finite volume method. The valuesrafndq are
periodically updated using Boltzmann’s equation to enguoper time evolution of the continuum-level flow field. A
brief description of the CMis given below. A more complete description can be found §).[1

COMPUTATIONAL ALGORITHM

Figure 1 shows a schematic diagram of the TAlyorithm. A continuum-level flow field is initialized on agelar,
cartesian grid that will serve as the initial condition fbetsimulation. This initial field is passed into the €M
integration cycle, which is composed of four stages: recangon, Monte Carlo, compression, and continuum. The
CM? integration cycle is repeated continuously to update taesort termsy andq, and ensure that the unsteady
evolution of the flow is calculated correctly.

In the first stage of the cycle, reconstruction, a collectibparticles is generated in each grid cell with the property
that the average density, velocity, and temperature aral ¢gthat of the continuum flowfield at that particular point
in space. The particles are randomly placed throughout ¢llenith velocities chosen from a prescribed velocity
distribution function. The choice of this distribution fttion is critical to the efficiency of the CRiand this will be
discussed in detail in the Discussion section.

In the second stage, Monte Carlo, a modified version of the DSivbcedure is used to move and collide the
particles in order to obtain a sequence of progressivelyenamcurate estimates of the true velocity distribution
f1,...fn. During each iteration we takigl time steps so that the Boltzmann equation is advanced fdrimatime
Otpsme = MAtpsmc, whereAtpsic is the timestep used for the modified DSMC computations natde less than
the mean collision time of the gas molecules. We want to talletheinstantaneousalues ofr andq for a given flow
field, so we choosétpsyc to be as small as possible so that the average velocity amiktature of each successive
new distributionfi, 1 at the end of an iteration are close to those of the origirgttibution f;. To ensure that the
average velocities and temperatures do not drift from theicoum-level values for each cell ovBr iterations, a
velocity shifting and scaling procedure is used (see [1b6pftails). The process ensumgs= ug andT* = Ty, but
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FIGURE 1. Schematic of the CMlalgorithm.

allows the distribution to change so that nEwandqg* evolve to their correct values. The Monte Carlo simulat®n i
continued using this procedure urgtilandg* no longer change.

The Monte Carlo procedure used to obt#inis a stochastic process, so statistical fluctuations arerémt in the
solutions. These statistical fluctuations can introducgcaaptable levels of uncertainty into the computationsef t
moments offy that will result in discontinuous continuum-level fieldsmoandg. In the third stage of the cycle,
compression, we attempt to reduce this statistical noissme@lly speaking, any viable method of noise reduction
can be used. For the one-dimensional flows considered heremploy an ensemble-averaging approach in which a
number of independent ensembles are simulated. We thenlatair andq in each cell using Egs. (4-5). Cubic B-
splines [17] are used to construct continuous fields of tliesatities over the entire domain from the discontinuous
averaged DSMC data. This procedure further reduces thst&taltnoise in the transport terms, and the resulting$ield
are smooth enough to be differentiated and used to solveotitehaum-level equations.

In the final stage, continuum, a finite-volume method is useddvance Eqs. (1-3) for a period of tind-y,
assumingr andq are constant. Each timesteftry, is composed of two substeps. In the first, the divergenag of
g, andt- up are calculated using standard second order central fiiffer@hce stencils and then used to partially
advance the solutions forward in time. In the second, theective terms of Eqs. (1-3) are calculated using the flux-
corrected transport algorithm [18, 19], and the consengthbles are updated and sent to the beginning of a new
CM? integration cycle.

DISCUSSION

Algorithmic Efficiency

Let N; be the total number of DSMC time steps taken during the MoatdoGtage of one cycléNg = M x Nyc),
whereNyc is the number of Monte Carlo iterations performed each ¢yahel letN, be the number of equivalent
DSMC timesteps taken during the continuum stage of eacte @}sl= dtry /Atpsmc). Recall that the intent of the
DSMC stage of the CMicycle is to calculate correct values fpandq and not to advance the solution forward in
time. Hence, we assume that time advancement of the bulk #ademe entirely in the continuum stage. The total
number of CM cycles that are performed ¥ = Niot /N2, whereNiq is the total number of timesteps taken in the
DSMC simulation. Finally, defin&,s as the number of ensembles performed for averaging purghsesy the
Monte Carlo stage of the CandEpswc as the number of ensembles over which averages are coliadteslDSMC
simulations.

If we assume that the wall clock time needed to advance Eg8) fbrward in timeAtpsuc in the continuum stage
is much smaller than that required to do the same in the Moatl@tage, we can write the estimated ratio of CM
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FIGURE 2. Steady state (a) temperature and (b) heat flux profiles folFtheier flow with Kn = 1 computed using stan-
dard DSMC (solid), Navier-Stokes equations with (dashettitand without (dashed) slip boundary conditions, and®®#th
Maxwellian initialization (solid with symbols).

wall clock time to independent DSMC wall clock time for thereanumber of timestepbl, as
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In [15], E* varied from¢’(0.1) to ©'(1) for a series of one-dimensional Rayleigh flows vi{thranging from 002 to
1. A series of Fourier flows witKn in the same range were also computed for wii¢hwvas found to vary fron@'(1)
to ¢(10). The decrease in efficiency for both sets of simulationsdmydrkn occurred because during each cyfie
was quite different from the initial guess of a Maxwelliardogty distribution, and a greater number of iterations in
the Monte Carlo stage of the algorithm were needed to reashlisiribution. For the Fourier flows, more iterations
were needed to ensure that the velocity distribution wafcgrfitly converged to compute the third-order moments
for the heat flux.

From Eq. (7), we find that the efficiency of the GMan be improved by (1) decreasing the number of independent
ensembles used to reduce the statistical noigaimnlq, (2) increasing the length of time spent integrating Egs3j1
each cycle, or (3) decreasing the number of iterations rieezleonverge to correct velocity distribution function.
The use of the FCT time advancement procedure in thé @Murally filters some of the noise from the molecular
velocities used to computeandq [20], and accordingly fewer ensembles are needed in thé @©Mchieve statistical
fluctuations in the final solutions with amplitudes similarthose calculated using DSMC. The test flows computed
in [15] using the CM required only 10% of the number of ensembles used in the DSMGlations to reach similar
noise levels. This reduction in computational cost is a eqasnce of the choice of integration method and is likely
problem dependent. Improving upon this by changing thesfimiilume integrator is unlikely and will not be pursued
here. Likewise, any method used to reduce the statistidabrin the Monte Carlo stage of the CMould be used
in the same manner in a standard DSMC simulation. Hence | gaqires in wall clock time would be achieved for
each simulation. Hence, item (1) is not a viable option fdri@ging gains in computational efficiency. The second
possibility of increasing efficiency (decreasifg) is to increase the length of time spent integrating Eqs3)1—
However, to achieve maximum accuracy in the transient naotn-level solution, we wardtry (or, equivalentlyNy)
to be as small as possible. Upper bounds on the sidg-gfare set by the physics of the flow and not by the details of
the solution procedure. Hence, using option (2) is notyikelproduce meaningful gains in efficiency without causing
a corresponding decrease in the accuracy of the solutiotioi®©¢8), decreasing the number of iterations needed to
achieve a converged velocity distribution function durihg Monte Carlo stage of the Glis the most viable option
for decreasinge*, and the remainder of this paper will be focused on this issue

Convergence of Velocity Distribution Functions
We examine the convergence of the molecular velocity thstion using one of the same tests flows used in [15],

the Fourier flow withKn = 1. Consider two parallel plates, one located at 0 and the other a = 1.0 x 104 m,
that are infinite in extent in the- andy-directions. The temperature of the top plate is 253 K antdhthe bottom
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FIGURE 3. (a) Initial temperature (dashed line) and heat flux (sohe)iprofiles used as the initial condition for a single €M
cycle and (b) the resulting convergence behavior of a thicter moment of as a function of the number of Monte Carlo iterations
initialized from a Maxwellian distribution (solid lineshd from a velocity pool generated during the previous cydsked lines)
at two different locations in the flow: near the wall (no syn®)@nd near the center of the gap (symbols).

plate is 293 K. The average temperature and pressure of g&78rK and 1542 x 102 atm, respectively, so that
A =1.0x10"*m andKn= 1. We wish to compute the one-dimensional continuum-l@rafterature profile between
the plates. The steady-state temperature and heat fluxswlealculated using DSMC, CMand the Navier-Stokes
equations with slip boundary conditions are shown in Figit DSMC solution differs noticeably from the Navier-
Stokes solution, which suggests that the constitutive fmwva andq do not correctly describe the molecular-level
momentum and energy fluxes at this level of rarefaction. Sitice formulation off and q are consistent with a
Chapman-Enskog velocity distribution, we can assume th@cbvelocity distribution differs significantly from thi
function and that this flow can be characterized as beingarrinsition regime.

In the CM?® calculation, each Monte Carlo cycle was initiated from a Mabian velocity distribution funcion, and
the resulting collection of molecular velocities was matlufor 400 iterations (equivalent to 2000 total Monte Carlo
time steps each cycle). Due to the rapid time evolution oféheperature fieldt andq were updated frequently, every
10Atpsmc: As mentioned above, the ratio of the number of ensemblasfas@veraging molecular properties in the
CM3 to that in a DSMC simulation iBcy3/Epsmc = 1/10, and, hencés* = 20 for this particular case.

Now we consider a new method of initializing the particleogties that does not require the use of an analytical
distribution function. Instead, we select the initial vatces for each cycle from a pool of velocities gathered atghd
of the previous cycle. The velocity distribution functicsulting from this initialization process differs onlygtitly
from the true velocity distribution since the new flow coitits in each cell have also changed only slightly during the
continuum portion of the cycle. The velocity pool collectiprocedure does not add to the overall computation time
of the Monte Carlo portion of the cycle since these velositiave already been computed. A totaNgE,,s total
velocity samples are collected, wheg is the average number of particles in each cell oveBkgs ensembles.

To study the convergence 6fto fy, we track the evolution of velocity distributions initiaéd using a Maxwellian
function and using the velocity pool approach during the Mo@Garlo stage of a single CMcycle. A particular
solution in the unsteady evolution of tiker = 1 Fourier flow, shown in Fig. 3(a), is used as an initial candit For
Maxwellian initialization, we use the standard approaee($or instance, [1]), and for the velocity pool approach we
initialize the particle velocities in the manner descrilédve using the collection of velocities gathered oveBhgs
ensembles at the end of the previous cycle as the samplefigote 3(b) shows the convergence behavior of a third
moment off, M* = [ c’ZV\/g,fdc, which is used to compute ttiecomponent ofy, at two different locations in the
flow: near the bottom wall and near the center of the gap, asaifin of the number of Monte Carlo iterations. Here,
¢ = VU2 +v2+w?is the magnitude of the thermal velocity vector withy-, andz-components, v, andw'.

For a Maxwellian velocity distributioM* is identically zero, and we see that it takes a finite numbtarite Carlo
iterations fotM* to approach a converged value. The convergence time depemesvhat on the local flow conditions,
and varies from about 250 to 300 iterations for the examphesve in Fig. 3(b). When using the velocity pool
method, for which the velocity distribution function of tetored velocities is already close to the true distribyttbe
convergence time is significantly faster. In fact, it is difiit to ascertain exactly how rapidly the velocity disttion
converges sinchly — Mg is likely smaller than the statistical noise in the compota. Regardles$]* appears to be
converged at least within 40 iterations. If the flow shownii. R were to be recomputed with G\ising the velocity



pool method withN = 40 to initialize the particle velocities at the beginningeaich cycleE* would equal 2, a vast
improvement over the original value.

CONCLUSIONS

We have introduced a new initialization procedure for thelédCarlo stage of a CRcycle that significantly reduces
the number of iterations to achieve converged values &ordq. At the beginning of each cycle, we initialize particle
velocities by randomly choosing them from a large ensembpadicle velocities collected at the end of the previous
cycle. The distribution of velocities in this ensemble ieritalready very close to that of the new ensemble we wish to
calculate. This simple procedure does not add to the cortiputime for each cycle, since these velocities are already
being computed. Rather, the decrease in the number ofiitesateeded far andq to reach converged values allows
for a significant increase in computational efficiency. Far test flow considered in this paper, the total computation
time for the CM method was on the same order as standard DSMC simulatiowsykq for some of the other test
flows considered in [15], CRwould be considerably more efficient than standard DSMC.

There are other potential modifications to €Mat could also help to increase its efficiency. For instaadeptively
changingdtry as a function of time based on the local rate of change of thasaopic variables could decrease the
number of updates andq when the flow is not rapidly varying. A similar adaptive prdoee could be used to check
for convergence afandq to minimize the number of iterations that are performed egcle. Another potential benefit
in using CM is that it can be easily integrated into a spatial hybrid metivhere the Navier-Stokes equations are
solved in one portion of the domain and Boltzmann’s equati@nother. Generally, DSMC has been used to solve the
Boltzmann equation in these types of simulations, but@ls an inherent advantage in that the continuum variables
are readily available and accessible in this method. Usiagé variables directly would avoid the use of complicated
coupling methods between DSMC and Navier-Stokes regiatstie currently being used.
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