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Abstract. The coupled multiscale, multiphysics method, CM3, is a novel method for simulating transition-regime gas flows.
The basic idea of the method is to incorporate physics from the small-scale molecular motions into the continuum framework
of the Navier-Stokes equations. CM3 uses a Monte Carlo procedure to solve the Boltzmann equationat various instants in
time and calculates the viscous stress tensor,ττττ, and heat flux vector,q, from the molecular velocities. The computedττττ andq
are then substituted into the Navier-Stokes equations and these equations are advanced forward in time using a finite-volume
method. A difficulty in implementing multiscale methods of this type lies in initializing the velocity distribution functions
used in the Monte Carlo solver at the beginning of each integration cycle. In this paper, we describe a method of particle
velocity reinitialization that is significantly more efficient than using a standard velocity distribution function.
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INTRODUCTION

Gas flows are generally classified by the level of rarefactionof the gas, which can be described by the Knudsen number,
Kn = λ/L, whereλ is the mean free path of the molecules andL is a characteristic length scale of the flow. When
Kn is small, the flow is in the continuum regime, and the Navier-Stokes equations are commonly used. WhenKn is
large, the flow is said to be rarefied, and the constitutive laws that describe momentum and energy transport in the
Navier-Stokes equations break down. The Boltzmann equation is commonly used instead to treat these high-Kn flows
[1]. This equation can be solved efficiently whenKn is large, but it becomes more difficult and time-consuming to
solve whenKn is small. Thus, accurate and efficient algorithms exist for computing large- and small-Kn flows, but for
a range ofKn (O(10−2) < Kn < O(10)), commonly referred to as the transition regime, the continuum equations are
not sufficiently accurate and Boltzmann’s equation is too time-consuming to use.

A variety of multiscale methods [2] that couple the Boltzmann and continuum approaches have been used to
calculate transition-regime flows. One divides the spatialdomain into continuum and non-continuum regions. In these
spatial hybrid methods [3, 4, 5, 6, 7, 8], the Navier-Stokes equations are used to compute the flow in the continuum
regions, and the Botzmann equation is solved using the direct simulation Monte Carlo (DSMC) method in the non-
continuum regions. Coupling between the regions is accomplished by matching the continuum and molecular-level
fluxes at the interfaces. Other domain decomposition techniques couple the two regions directly in the governing
equations [9, 10]. A second approach is to use information about the molecular-level system to form a new set of
macroscopic evolution equations. The gas-kinetic hydrodynamic method [11, 12], the coarse-grained acceleration
method for the Boltzmann equation [13], and the micro-macroupscaling method [14] are all based on this principle.

A new multiscale method, the coupled multiscale multiphysics method (CM3) [15], solves the continuum-level
conservation laws using molecular-level fluxes calculateddirectly from a Monte Carlo simulation in the place of
constitutive models for the energy and momentum fluxes. If these fluxes are updated frequently enough, the CM3

significantly extends the range of applicability of the continuum-level conservation laws. It has been used successfully
to calculate several one-dimensional transition-regime test flows withKn up to unity [15]. The challenge of this
method is that it becomes less computationally efficient asKn increases. In this paper, we discuss why this is so and
test methods for improving the efficiency of the CM3, a brief overview of which is given in the following section.



PHYSICAL MODEL

We can compute moments of Boltzmann’s equation by multiplying it bymw, mwc, and(1/2)mwc2 and integrating over
all velocity space to obtain the following set of evolution equations [1]:
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In deriving this expression, the molecular velocity has been decomposed into the sum of a mean velocityu0 and
fluctuating or thermal velocityc′, and the continuum-level density, linear momenta, and energy are defined asρ = nmw,
ρu0 = nmwc, andρe= nmwc2/2, respectively.

If we define the viscous stress tensor, heat flux vector, and scalar pressure as

ττττ = −(ρc′c′−PI), (4)
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respectively, Eqs. (1–3) are identical to the continuum conservation equations for mass, momenta, and energy [16].
The fundamental idea of the CM3 is to compute directly the properties of the small-scale molecular motions and use

this information to close Eqs. (1–3) instead of using constitutive laws forττττ andq. Starting from a particular continuum-
level flow field, we generate a compatible distribution of molecular velocities and then solve the Boltzmann equation
for a short interval of time to calculateττττ andq using Eqs. (4–5). The computedττττ andq are then substituted into
Eqs. (1–3), and these equations are advanced forward in timeusing a finite volume method. The values ofττττ andq are
periodically updated using Boltzmann’s equation to ensureproper time evolution of the continuum-level flow field. A
brief description of the CM3 is given below. A more complete description can be found in [15].

COMPUTATIONAL ALGORITHM

Figure 1 shows a schematic diagram of the CM3 algorithm. A continuum-level flow field is initialized on a regular,
cartesian grid that will serve as the initial condition for the simulation. This initial field is passed into the CM3

integration cycle, which is composed of four stages: reconstruction, Monte Carlo, compression, and continuum. The
CM3 integration cycle is repeated continuously to update the transport terms,ττττ andq, and ensure that the unsteady
evolution of the flow is calculated correctly.

In the first stage of the cycle, reconstruction, a collectionof particles is generated in each grid cell with the property
that the average density, velocity, and temperature are equal to that of the continuum flowfield at that particular point
in space. The particles are randomly placed throughout the cell with velocities chosen from a prescribed velocity
distribution function. The choice of this distribution function is critical to the efficiency of the CM3, and this will be
discussed in detail in the Discussion section.

In the second stage, Monte Carlo, a modified version of the DSMC procedure is used to move and collide the
particles in order to obtain a sequence of progressively more accurate estimates of the true velocity distribution
f1, ... fN. During each iteration we takeM time steps so that the Boltzmann equation is advanced forward in time
δ tDSMC = M∆tDSMC, where∆tDSMC is the timestep used for the modified DSMC computations, taken to be less than
the mean collision time of the gas molecules. We want to calculate theinstantaneousvalues ofττττ andq for a given flow
field, so we chooseδ tDSMC to be as small as possible so that the average velocity and temperature of each successive
new distribution fi+1 at the end of an iteration are close to those of the original distribution fi . To ensure that the
average velocities and temperatures do not drift from the continuum-level values for each cell overN iterations, a
velocity shifting and scaling procedure is used (see [15] for details). The process ensuresu∗ = u0 andT∗ = T0, but
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FIGURE 1. Schematic of the CM3 algorithm.

allows the distribution to change so that newττττ∗ andq∗ evolve to their correct values. The Monte Carlo simulation is
continued using this procedure untilττττ∗ andq∗ no longer change.

The Monte Carlo procedure used to obtainfN is a stochastic process, so statistical fluctuations are inherent in the
solutions. These statistical fluctuations can introduce unacceptable levels of uncertainty into the computations of the
moments offN that will result in discontinuous continuum-level fields ofττττ andq. In the third stage of the cycle,
compression, we attempt to reduce this statistical noise. Generally speaking, any viable method of noise reduction
can be used. For the one-dimensional flows considered here, we employ an ensemble-averaging approach in which a
number of independent ensembles are simulated. We then calculateττττ andq in each cell using Eqs. (4–5). Cubic B-
splines [17] are used to construct continuous fields of thesequantities over the entire domain from the discontinuous
averaged DSMC data. This procedure further reduces the statistical noise in the transport terms, and the resulting fields
are smooth enough to be differentiated and used to solve the continuum-level equations.

In the final stage, continuum, a finite-volume method is used to advance Eqs. (1–3) for a period of timeδ tFV ,
assumingττττ andq are constant. Each timestep,∆tFV , is composed of two substeps. In the first, the divergence ofττττ,
q, andττττ · u0 are calculated using standard second order central finite-difference stencils and then used to partially
advance the solutions forward in time. In the second, the convective terms of Eqs. (1–3) are calculated using the flux-
corrected transport algorithm [18, 19], and the conserved variables are updated and sent to the beginning of a new
CM3 integration cycle.

DISCUSSION

Algorithmic Efficiency

Let N1 be the total number of DSMC time steps taken during the Monte Carlo stage of one cycle (N1 = M ∗NMC),
whereNMC is the number of Monte Carlo iterations performed each cycle, and letN2 be the number of equivalent
DSMC timesteps taken during the continuum stage of each cycle (N2 = δ tFV/∆tDSMC). Recall that the intent of the
DSMC stage of the CM3 cycle is to calculate correct values forττττ andq and not to advance the solution forward in
time. Hence, we assume that time advancement of the bulk flow is done entirely in the continuum stage. The total
number of CM3 cycles that are performed isY = Ntot/N2, whereNtot is the total number of timesteps taken in the
DSMC simulation. Finally, defineECM3 as the number of ensembles performed for averaging purposesduring the
Monte Carlo stage of the CM3 andEDSMC as the number of ensembles over which averages are collectedin the DSMC
simulations.

If we assume that the wall clock time needed to advance Eqs. (1–3) forward in time∆tDSMC in the continuum stage
is much smaller than that required to do the same in the Monte Carlo stage, we can write the estimated ratio of CM3
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FIGURE 2. Steady state (a) temperature and (b) heat flux profiles for theFourier flow with Kn = 1 computed using stan-
dard DSMC (solid), Navier-Stokes equations with (dash-dotted) and without (dashed) slip boundary conditions, and CM3 with
Maxwellian initialization (solid with symbols).

wall clock time to independent DSMC wall clock time for the same number of timesteps,N, as
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Y(ECM3N1TDSMC)

EDSMC(NTDSMC)
=
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=
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In [15], E∗ varied fromO(0.1) to O(1) for a series of one-dimensional Rayleigh flows withKn ranging from 0.02 to
1. A series of Fourier flows withKn in the same range were also computed for whichE∗ was found to vary fromO(1)
to O(10). The decrease in efficiency for both sets of simulations for largerKn occurred because during each cyclefN
was quite different from the initial guess of a Maxwellian velocity distribution, and a greater number of iterations in
the Monte Carlo stage of the algorithm were needed to reach this distribution. For the Fourier flows, more iterations
were needed to ensure that the velocity distribution was sufficiently converged to compute the third-order moments
for the heat flux.

From Eq. (7), we find that the efficiency of the CM3 can be improved by (1) decreasing the number of independent
ensembles used to reduce the statistical noise inττττ andq, (2) increasing the length of time spent integrating Eqs. (1–3)
each cycle, or (3) decreasing the number of iterations needed to converge to correct velocity distribution function.
The use of the FCT time advancement procedure in the CM3 naturally filters some of the noise from the molecular
velocities used to computeττττ andq [20], and accordingly fewer ensembles are needed in the CM3 to achieve statistical
fluctuations in the final solutions with amplitudes similar to those calculated using DSMC. The test flows computed
in [15] using the CM3 required only 10% of the number of ensembles used in the DSMC simulations to reach similar
noise levels. This reduction in computational cost is a consequence of the choice of integration method and is likely
problem dependent. Improving upon this by changing the finite volume integrator is unlikely and will not be pursued
here. Likewise, any method used to reduce the statistical noise in the Monte Carlo stage of the CM3 could be used
in the same manner in a standard DSMC simulation. Hence, equal gains in wall clock time would be achieved for
each simulation. Hence, item (1) is not a viable option for achieving gains in computational efficiency. The second
possibility of increasing efficiency (decreasingE∗) is to increase the length of time spent integrating Eqs. (1–3).
However, to achieve maximum accuracy in the transient continuum-level solution, we wantδ tFV (or, equivalently,N2)
to be as small as possible. Upper bounds on the size ofδ tFV are set by the physics of the flow and not by the details of
the solution procedure. Hence, using option (2) is not likely to produce meaningful gains in efficiency without causing
a corresponding decrease in the accuracy of the solution. Option (3), decreasing the number of iterations needed to
achieve a converged velocity distribution function duringthe Monte Carlo stage of the CM3, is the most viable option
for decreasingE∗, and the remainder of this paper will be focused on this issue.

Convergence of Velocity Distribution Functions

We examine the convergence of the molecular velocity distribution using one of the same tests flows used in [15],
the Fourier flow withKn = 1. Consider two parallel plates, one located atz= 0 and the other atz= 1.0×10−4 m,
that are infinite in extent in thex- andy-directions. The temperature of the top plate is 253 K and that of the bottom
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FIGURE 3. (a) Initial temperature (dashed line) and heat flux (solid line) profiles used as the initial condition for a single CM3

cycle and (b) the resulting convergence behavior of a third-order moment off as a function of the number of Monte Carlo iterations
initialized from a Maxwellian distribution (solid lines) and from a velocity pool generated during the previous cycle (dashed lines)
at two different locations in the flow: near the wall (no symbols) and near the center of the gap (symbols).

plate is 293 K. The average temperature and pressure of gas are 273 K and 1.542× 10−3 atm, respectively, so that
λ = 1.0×10−4 m andKn= 1. We wish to compute the one-dimensional continuum-level temperature profile between
the plates. The steady-state temperature and heat flux solutions calculated using DSMC, CM3, and the Navier-Stokes
equations with slip boundary conditions are shown in Fig. 2.The DSMC solution differs noticeably from the Navier-
Stokes solution, which suggests that the constitutive lawsfor ττττ andq do not correctly describe the molecular-level
momentum and energy fluxes at this level of rarefaction. Since, the formulation ofττττ and q are consistent with a
Chapman-Enskog velocity distribution, we can assume the correct velocity distribution differs significantly from this
function and that this flow can be characterized as being in the transition regime.

In the CM3 calculation, each Monte Carlo cycle was initiated from a Maxwellian velocity distribution funcion, and
the resulting collection of molecular velocities was matured for 400 iterations (equivalent to 2000 total Monte Carlo
time steps each cycle). Due to the rapid time evolution of thetemperature field,ττττ andq were updated frequently, every
10∆tDSMC. As mentioned above, the ratio of the number of ensembles used for averaging molecular properties in the
CM3 to that in a DSMC simulation isECM3/EDSMC = 1/10, and, hence,E∗ = 20 for this particular case.

Now we consider a new method of initializing the particle velocities that does not require the use of an analytical
distribution function. Instead, we select the initial velocities for each cycle from a pool of velocities gathered at the end
of the previous cycle. The velocity distribution function resulting from this initialization process differs only slightly
from the true velocity distribution since the new flow conditions in each cell have also changed only slightly during the
continuum portion of the cycle. The velocity pool collection procedure does not add to the overall computation time
of the Monte Carlo portion of the cycle since these velocities have already been computed. A total ofN∗

PECM3 total
velocity samples are collected, whereNP is the average number of particles in each cell over theECM3 ensembles.

To study the convergence off to fN, we track the evolution of velocity distributions initialized using a Maxwellian
function and using the velocity pool approach during the Monte Carlo stage of a single CM3 cycle. A particular
solution in the unsteady evolution of theKn = 1 Fourier flow, shown in Fig. 3(a), is used as an initial condition. For
Maxwellian initialization, we use the standard approach (see, for instance, [1]), and for the velocity pool approach we
initialize the particle velocities in the manner describedabove using the collection of velocities gathered over theECM3

ensembles at the end of the previous cycle as the sample pool.Figure 3(b) shows the convergence behavior of a third
moment of f , M∗ =

∫ ∞
−∞ c′2w′

3 f dc, which is used to compute thez-component ofq, at two different locations in the
flow: near the bottom wall and near the center of the gap, as a function of the number of Monte Carlo iterations. Here,
c′ =

√
u′2 +v′2+w′2 is the magnitude of the thermal velocity vector withx-, y-, andz-components,u′, v′, andw′.

For a Maxwellian velocity distribution,M∗ is identically zero, and we see that it takes a finite number ofMonte Carlo
iterations forM∗ to approach a converged value. The convergence time dependssomewhat on the local flow conditions,
and varies from about 250 to 300 iterations for the examples shown in Fig. 3(b). When using the velocity pool
method, for which the velocity distribution function of thestored velocities is already close to the true distribution, the
convergence time is significantly faster. In fact, it is difficult to ascertain exactly how rapidly the velocity distribution
converges sinceM∗

N −M∗
0 is likely smaller than the statistical noise in the computations. Regardless,M∗ appears to be

converged at least within 40 iterations. If the flow shown in Fig. 2 were to be recomputed with CM3 using the velocity



pool method withN = 40 to initialize the particle velocities at the beginning ofeach cycle,E∗ would equal 2, a vast
improvement over the original value.

CONCLUSIONS

We have introduced a new initialization procedure for the Monte Carlo stage of a CM3 cycle that significantly reduces
the number of iterations to achieve converged values forττττ andq. At the beginning of each cycle, we initialize particle
velocities by randomly choosing them from a large ensemble of particle velocities collected at the end of the previous
cycle. The distribution of velocities in this ensemble is then already very close to that of the new ensemble we wish to
calculate. This simple procedure does not add to the computation time for each cycle, since these velocities are already
being computed. Rather, the decrease in the number of iterations needed forττττ andq to reach converged values allows
for a significant increase in computational efficiency. For the test flow considered in this paper, the total computation
time for the CM3 method was on the same order as standard DSMC simulations; however, for some of the other test
flows considered in [15], CM3 would be considerably more efficient than standard DSMC.

There are other potential modifications to CM3 that could also help to increase its efficiency. For instance, adaptively
changingδ tFV as a function of time based on the local rate of change of the macroscopic variables could decrease the
number of updates toττττ andq when the flow is not rapidly varying. A similar adaptive procedure could be used to check
for convergenceofττττ andq to minimize the number of iterations that are performed eachcycle. Another potential benefit
in using CM3 is that it can be easily integrated into a spatial hybrid method where the Navier-Stokes equations are
solved in one portion of the domain and Boltzmann’s equationin another. Generally, DSMC has been used to solve the
Boltzmann equation in these types of simulations, but CM3 has an inherent advantage in that the continuum variables
are readily available and accessible in this method. Using these variables directly would avoid the use of complicated
coupling methods between DSMC and Navier-Stokes regions that are currently being used.
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